Final Results of the GEp-III Experiment (E04-108)

Andrew Puckett Los Alamos National Laboratory on behalf of the GEp-III Collaboration 4th Workshop on Exclusive Reactions at High Momentum Transfer Jefferson Lab 5/19/2010

Outline

- Nucleon form factors overview
- Experiments E04-108 and E04-019 overview
- Data analysis
- Results
 - E04-108 final results (submitted to accepted by PRL)
- Statistical Impact of E04-108 results
- Conclusion

GEp-III Collaboration

Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to $Q^2 = 8.5 \text{ GeV}^2$

A. J. R. Puckett,^{1,*} E. J. Brash,^{2,3} M. K. Jones,³ W. Luo,⁴ M. Meziane,⁵ L. Pentchev,⁵ C. F. Perdrisat,⁵ V. Punjabi,⁶ F. R. Wesselmann,⁶ A. Ahmidouch,⁷ I. Albayrak,⁸ K. A. Aniol,⁹ J. Arrington,¹⁰ A. Asaturyan,¹¹ H. Baghdasaryan,¹² F. Benmokhtar,¹³ W. Bertozzi,¹ L. Bimbot,¹⁴ P. Bosted,³ W. Boeglin,¹⁵ C. Butuceanu,¹⁶ P. Carter,² S. Chernenko,¹⁷ E. Christy,⁸ M. Commisso,¹² J. C. Cornejo,⁹ S. Covrig,³ S. Danagoulian,⁷ A. Daniel,¹⁸ A. Davidenko,¹⁹ D. Day,¹² S. Dhamija,¹⁵ D. Dutta,²⁰ R. Ent,³ S. Frullani,²¹ H. Fenker,³ E. Frlez,¹² F. Garibaldi,²¹ D. Gaskell,³ S. Gilad,¹ R. Gilman,^{3,22} Y. Goncharenko,¹⁹ K. Hafidi,¹⁰ D. Hamilton,²³ D. W. Higinbotham,³ W. Hinton,⁶ T. Horn,³ B. Hu,⁴ J. Huang,¹ G. M. Huber,¹⁶ E. Jensen,² C. Keppel,⁸ M. Khandaker,⁶ P. King,¹⁸ D. Kirillov,¹⁷ M. Kohl,⁸ V. Kravtsov,¹⁹ G. Kumbartzki,²² Y. Li,⁸ V. Mamyan,¹² D. J. Margaziotis,⁹ A. Marsh,² Y. Matulenko,¹⁹ J. Maxwell,¹² G. Mbianda,²⁴ D. Meekins,³ Y. Melnik,¹⁹ J. Miller,²⁵ A. Mkrtchyan,¹¹ H. Mkrtchyan,¹¹ B. Moffit,¹ O. Moreno,⁹ J. Mulholland,¹² A. Narayan,²⁰ S. Nedev,²⁶ Nuruzzaman,²⁰ E. Piasetzky,²⁷ W. Pierce,² N. M. Piskunov,¹⁷ Y. Prok,² R. D. Ransome,²² D. S. Razin,¹⁷ P. Reimer,¹⁰ J. Reinhold,¹⁵ O. Rondon,¹² M. Shabestari,¹² A. Shahinyan,¹¹ K. Shestermanov,^{19,†} S. Širca,²⁸ I. Sitnik,¹⁷ L. Smykov,^{17,†} G. Smith,³ L. Solovyev,¹⁹ P. Solvignon,¹⁰ R. Subedi,¹² E. Tomasi-Gustafsson,^{14,29} A. Vasiliev,¹⁹ M. Veilleux,² B. B. Wojtsekhowski,³ S. Wood,³ Z. Ye,⁸ Y. Zanevsky,¹⁷ X. Zhang,⁴ Y. Zhang,⁴ X. Zheng,¹² and L. Zhu¹

GEp-III Collaboration 5/19/10

Experimental Hall C

Institutions

¹Massachusetts Institute of Technology, Cambridge, MA 02139 ²Christopher Newport University, Newport News, VA 23606 ³Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 ⁴Lanzhou Üniversity, Lanzhou 730000, Gansu, Peoples Republic of China ⁵College of William and Mary, Williamsburg, VA 23187 ⁶Norfolk State University, Norfolk, VA 23504 ⁷North Carolina A&T State University, Greensboro, NC 27411 ⁸Hampton University, Hampton, VA 23668 ⁹California State University Los Angeles, Los Angeles, CA 90032 ¹⁰Argonne National Laboratory, Argonne, IL, 60439 ¹¹Yerevan Physics Institute, Yerevan 375036, Armenia ¹²University of Virginia, Charlottesville, VA 22904 ¹³Carnegie Mellon University, Pittsburgh, PA 15213 ¹⁴Institut de Physique Nucléaire, CNRS/IN2P3 and Université Paris-Sud, France ¹⁵Florida International University, Miami, FL 33199 ¹⁶University of Regina, Regina, SK S4S OA2, Canada ¹⁷ JINR-LHE, Dubna, Moscow Region, Russia 141980 ¹⁸Ohio University, Athens, Ohio 45701 ¹⁹IHEP, Protvino, Moscow Region, Russia 142284 ²⁰Mississippi State University, Mississippi, MS 39762 ²¹INFN, Sezione Sanità and Istituto Superiore di Sanità, 00161 Rome, Italy ²²Rutgers, The State University of New Jersey, Piscataway, NJ 08855 ²³ University of Glasgow, Glasgow G12 8QQ, Scotland UK ²⁴University of Witwatersrand, Johannesburg, South Africa ²⁵University of Maryland, College Park, MD 20742 ²⁶University of Chemical Technology and Metallurgy, Sofia, Bulgaria ²⁷University of Tel Aviv, Tel Aviv, Israel ²⁸University of Ljubljana, SI-1000 Ljubljana, Slovenia ²⁹DSM. IRFU. SPhN. Saclay. 91191 Gif-sur-Yvette, France

Overview of Nucleon Form Factors

One-photon exchange (OPEX) mechanism for elastic eN scattering

Definitions and Formulas:

$$\begin{split} \Gamma^{\mu} &= F_1(q^2)\gamma^{\mu} + F_2(q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M}\\ Q^2 &= -q^2 > 0\\ G_E &= F_1 - \tau F_2\\ G_M &= F_1 + F_2\\ \tau &= \frac{Q^2}{4M^2}\\ \frac{d\sigma}{d\Omega_e} &= \frac{\alpha^2}{Q^2} \bigg(\frac{E_e'}{E_e}\bigg) \bigg[\frac{G_E^2 + \tau G_M^2}{1 + \tau}\cot^2\bigg(\frac{\theta_e}{2}\bigg) + 2\tau G_M^2\bigg] \end{split}$$

Lab Differential Cross Section: Rosenbluth Formula

Rosenbluth (L/T) Separation

$$\sigma_r = (1 + \tau)\varepsilon \frac{\sigma_{eN}}{\sigma_{Mott}} = \varepsilon G_E^2 + \tau G_M^2$$

$$\varepsilon = \left[1 + 2(1 + \tau)\tan^2\left(\frac{\theta_e}{2}\right)\right]^{-1}$$

- Measure angular dependence of scattering cross section at fixed Q^2
- In OPEX, "reduced cross section" is linear in ε
- Slope and intercept determine $G_{\rm F}^2$, $G_{\rm M}^2$ respectively

PRL 94, 142301 (2005)

World Cross-Section Data

 $G^p_{M}/\mu_p G_D$

10

• Cross section data for $G_E{}^p$, $G_M{}^p$, $G_M{}^n$ qualitatively described by dipole form:

$$G_D = \left(1 + \frac{Q^2}{\Lambda^2}\right)^{-2} \quad \Lambda^2 = 0.71 \text{ GeV}^2$$

- L/T separation becomes insensitive to $G_M(G_E)$ at small (large) Q^2
- Method impractical for (small) G_E^{n}

GEp-III Collaboration 5/19/10

1.2 Andivahis et. al., 19 Bartel et. al., 1973 Berger et. al., 1971 Kirk et. al., 197 Borkowski et. al., 197 $G_M^p/\mu_p G_D$ Janssens et. al., 196 Price et. al., 1971 Qattan et. al., 2005 Sill et. al., 1993 Walker et. al., 1994 10^{-1} 1 10 Q^2 , GeV^2 $G^n_M/\mu_n G_D$ 1.4 1.2 ÷÷÷÷÷÷;; 0.8 Anklin et. al., 1994+1998 Bruins et. al., 1995 Gao et. al., 1994 JLab E95-001, 200' $G_M^n/\mu_n G_D$ achniet et. al., 200 Markowitz et. al., 1993 Rock et. al., 1982+1992 Xu et. al., 2000+2003

1

 Q^2 , GeV^2

Polarization Transfer

 $p(\vec{e}, e'\vec{p})$

$$I_0 P_l = \sqrt{\tau(1+\tau)} \tan^2 \left(\frac{\theta_e}{2}\right) \frac{E_e + E'_e}{M} G_M^2$$
$$I_0 P_t = -2\sqrt{\tau(1+\tau)} \tan \left(\frac{\theta_e}{2}\right) G_E G_M$$
$$P_n = 0$$
$$I_0 \equiv G_E^2 + \frac{\tau}{\varepsilon} G_M^2$$
$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E_e + E'_e}{2M} \tan \left(\frac{\theta_e}{2}\right)$$

• Elastic scattering of polarized electrons from unpolarized nucleons transfers polarization to scattered nucleons

- Better sensitivity to $G_{\rm F}$, especially at high Q²
- Determines sign of $G_{\rm F}/G_{\rm M}$

• Much lower sensitivity to radiative corrections and twophoton-exchange (TPEX) than cross section

Precise recoil polarization data for $R = \mu_p G_E^{p/2} G_M^{p}$ conclusively revealed a strong deviation from $R \approx 1$ scaling of cross section data

Jefferson Lab

Experiments E04-108 & E04-019

New recoil polarization measurements of G_E^p/G_M^p in Hall C at JLab

Kinematics

$Q^2, \mathrm{GeV^2}$	ε	E_{beam}, GeV	$ heta_p,~^\circ$	p_p, GeV	E_e, GeV	$ heta_e,^\circ$
2.5	0.154	1.873	14.495	2.0676	0.532	105.2
2.5	0.633	2.847	30.985	2.0676	1.51	44.9
2.5	0.789	3.680	36.10	2.0676	2.37	30.8
5.2	0.377	4.053	17.94	3.5887	1.27	60.3
6.8	0.507	5.714	19.10	4.4644	2.10	44.2
8.5	0.236	5.714	11.6	5.407	1.16	69.0

• E04-108: three new high Q² measurements

Jefferson Lab

- E04-019: precision measurements at $Q^2=2.5$ GeV² for three ε values; look for signatures of TPEX
- Beam: ~60-100 µA CW, 80-85% polarized (Moller)
- Target: 20 cm LH₂, nominal luminosity $\sim 4 \times 10^{38}$ s⁻¹cm⁻²

HMS+FPP

• High Momentum Spectrometer (HMS), superconducting, 25° vertical bend magnetic spectrometer measures proton:

- Angles
- Momentum
- Vertex
- Focal Plane Polarimeter:
 - Measure transverse components of proton polarization at the focal plane

BigCal

- Measure electron angles, energy
- Separate elastic from inelastic using angular correlation
- Large Jacobian in elastic ep scattering—large acceptance to match proton arm

• For
$$Q^2 = 8.5 \text{ GeV}^2$$
, $\Omega_e = 143 \text{ msr to } \Omega_p = 6.7 \text{ msr}$

Data Analysis

- Elastic Event Selection
 - Inelasticity variable definitions
 - Cut selection and background estimation
- Extraction of Polarization Observables
 - Focal plane asymmetry extraction
 - Spin precession calculation

Elastic Event Selection, I

$$p_p(\theta_p) = \frac{2M_p E_e(E_e + M_p)\cos\theta_p}{M_p^2 + 2M_p E_e + E_e^2\sin^2\theta_p}$$

Proton angle-momentum correlation in elastic scattering
p-p(θ) spectra before applying cuts to BigCal electron position

GEp-III Collaboration 5/19/10

Experimental Hall C

Elastic Event Selection, II

- Elliptical cut at BigCal cleans up "dp" spectrum rather efficiently
- Fat tail on inelastic side of peak indicates "leftover" background
- Tight cuts to dx, dy, dp needed
- Still ~6% background for final cuts at $Q^2=8.5 \text{ GeV}^2$

GEp-III Collaboration 5/19/10

Experimental Hall C

Helicity difference asymmetry, $Q^2 = 8.5 \text{ GeV}^2$, $0.5^\circ \le \theta \le 14.0^\circ$

GEp-III Collaboration 5/19/10

Jefferson Lab

Spin Precession, I Q^2 =5.2 GeV², zero crossing = 180 ° - p1 = (180.00 ± 0.95) ° χ^2 / ndf 3.923 / 5 Prob 0.5605 p0 -0.0551 ± 0.002809 0.02 $\textbf{-6.001e-05} \pm \textbf{0.01661}$ **p1** 0.01 0 P_x^{fpp} $\begin{pmatrix} S_{xt} & S_{xn} & S_{xl} \\ S_{yt} & S_{yn} & S_{yl} \\ S_{zt} & S_{zn} & S_{zl} \end{pmatrix} \begin{pmatrix} P_t \\ P_n \\ P_n \\ P_l \end{pmatrix}$ -0.01 P_y^{fpp} -0.02 **D** fpp -0.03 2.8 3.2 3.4 3.6 2.6 3 χ_{θ}

- Normal asymmetry at focal plane should cross zero at χ =180°
- Within statistics, data compatible with this prediction

Jefferson Lab

• Fit: $a_x = p0 \sin(\chi + p1)$, $\langle hA_y \rangle S_{xl}P_l$ from COSY agrees with χ -dependence of the data

Spin Precession, II

R vs. reconstructed kinematics, $Q^2 = 8.5 \text{ GeV}^2$, DIPOLE/COSY

GEp-III Collaboration 5/19/10

Jefferson Lab

Systematic Uncertainties

Q ² , GeV ²	5.2	6.7	8.5
φ _{bend} (±.5 mrad)	.0162	.0202	.0378
θ _{bend} (±2 mrad)	.0009	.0006	.0002
δ (±0.3%)	.0029	.0027	.0024
$\phi_{fpp} (\pm .14 mrad/sin(9_{fpp}))$.0003	.0057	.0178
E _{beam} (±.05%)	.00027	.00009	.00025
False asym.	.0069	.0057	.0018
Background	.0015	.0013	.0130
Rad. Corr. (% of R)	0.05% (ΔR ≈0002)	0.12% (ΔR ≈0004)	0.13% (ΔR ≈0002)
Total ΔR_{syst}	.018	.022	.043

• Non-dispersive precession uncertainty dominates the systematic uncertainty in R

- A_y, h cancel, no uncertainty for R
- Standard radiative corrections (not applied) **negligible** compared to other uncertainties

Final Results, I

- Results finalized, accepted for publication in PRL
 50% increase in Q²
 - coverage
- New data favor a slowing rate of decrease of R

GEp-III Collaboration 5/19/10

Experimental Hall C

Final Results, II

22

Statistical Impact of GEp-III

• Global fit of G_E^p and G_M^p using Kelly parametrization: PRC 70, 068202 (2004) • Including GEp-III data pushes zero crossing from ~9 to ~12 GeV², reduces uncertainty in asymptotic G_E^p/G_D by a factor of more than 2.

Jefferson Lab

Global Fit and G_M^p

• Global analysis using constraint on R from polarization data brings a small systematic increase in $G_M{}^p$, consistent with Brash 2001 and Arrington, Melnitchouk, Tjon 2007 (TPEX effects neglected in our analysis), due to smaller $G_E{}^{p2}$ contribution to σ_r .

Global Fit and F₂^p

Global fit of Q⁶F₂^p before/after GEp-III

Global Fit and F₁^p

Global fit of Q⁴F₁^p, **before/after** GEp-III

Conclusion

- GEp-III results finalized, accepted for publication in PRL
- Extended recoil polarization data to $Q^2 = 8.5$ GeV²
- Significant new constraints on high-Q² behavior of F. F. models, GPD moments, transverse charge and magnetization densities, etc.
- GEp-2 γ results not far behind!

Backup Slides

Elastic Event Selection

- Electron coordinates/angles + proton momentum measured with excellent resolution; use these quantities to define cut variables
- Calculate θ_e from E_e , p_p
- Calculate φ_e from φ_p (coplanarity)
- Project from vertex to BigCal, compare to measured electron coordinates
- Above: projections of horizontal (dx) and vertical (dy) coordinate differences:
 - No cut, 3^o dp cut, 3^o dp anticut
 - Tight dp cut rejects some small fraction of elastic events (small "bumps")

Background Estimation

events

Number of

- Estimate background directly from data by extrapolating dx, dy distribution under the peak (above):
 - Data, fitted background and projections
- Compare data (top right) and MC (bottom right) for dp

GEp-III Collaboration 5/19/10

10

Background Subtraction

- Background and signal polarizations differ, F. F. ratio decreases as elastic cuts are relaxed
- Stability of background-subtracted F. F. ratio w.r.t. cut variations including more background validates background subtraction method

Extraction of Polarization Observables

$$N^{\pm}(\vartheta,\varphi) = N_{0}^{\pm} \frac{\varepsilon(\vartheta)}{2\pi} \begin{bmatrix} 1 + (c_{1}(\vartheta) \pm A_{y}(\vartheta)P_{y}^{fpp})\cos\varphi \\ + (s_{1}(\vartheta) \mp A_{y}(\vartheta)P_{x}^{fpp})\sin\varphi + \\ c_{2}(\vartheta)\cos(2\varphi) + s_{2}(\vartheta)\sin(2\varphi) + \dots \end{bmatrix}$$

$$\begin{split} f_{\pm} &= \frac{N^{\pm}(\vartheta, \varphi)}{N_{0}^{\pm}} \\ f_{\pm} &+ f_{-} = \frac{\varepsilon(\vartheta)}{\pi} \begin{bmatrix} 1 + c_{1}\cos\varphi + s_{1}\sin\varphi + \\ c_{2}\cos(2\varphi) + s_{2}\sin(2\varphi) + \dots \end{bmatrix} \\ f_{\pm} &- f_{-} = \frac{\varepsilon(\vartheta)A_{y}(\vartheta)}{\pi} \begin{bmatrix} P_{y}^{fpp}\cos\varphi - P_{x}^{fpp}\sin\varphi \end{bmatrix} \end{split}$$

Angular distribution and azimuthal asymmetry definitions

Spin Precession, I

$$\frac{d\vec{S}}{dt} = \frac{e}{m\gamma}\vec{S} \times \left[\frac{g}{2}\vec{B}_{\parallel} + \left(1 + \gamma\left(\frac{g}{2} - 1\right)\right)\vec{B}_{\perp}\right]$$
$$\frac{d\vec{v}}{dt} = \frac{e}{m\gamma}\vec{v} \times \vec{B}$$
$$\left(\frac{d\vec{S}}{dt}\right)_{comoving} \xrightarrow{B_{\parallel}=0} \gamma\left(\frac{g}{2} - 1\right)\frac{e}{m\gamma}\vec{S} \times \vec{B}$$

 $\chi = \gamma \kappa \theta_{bend}$

Q^2, GeV^2	$p_0, \mathrm{GeV/c}$	$\chi_ heta,^\circ$
2.5	2.0676	108.5
5.2	3.5887	177.2
6.7	4.4644	217.9
8.5	5.4070	262.2

- BMT equation (1959): relativistic spin precession in a magnetic field
- χ = precession angle relative to velocity in a constant, uniform magnetic field
- Precession angles corresponding to HMS 25° central bend for this experiment shown in table
- Unique spin rotation for each event, calculated using HMS COSY model

FPP Reconstruction

- FPP1 (FPP2) event distributions:
 - Polar angle θ (top left)
 - Closest approach distance s_{close} (top right)
 - θ vs point of closest approach z_{close} (bottom right)
- Black lines represent analysis cuts

False Asymmetries

- Helicity-independent false/ instrumental asymmetries caused by:
 - FPP acceptance/efficiency
 - φ misreconstruction:
 - Misalignment (1φ)
 - xy resolution asymmetry (2ϕ)
- θ-dependent (bottom right)
- Cancelled by helicity reversal to first order
- Second-order effects small
- *Measured* using sum distribution and *corrected* in analysis

GEp-III Collaboration 5/19/10

Experimental Hall C

Polarized Target Asymmetry and G_Eⁿ

$$A_{phys} = -\frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_e}{2}}{\frac{G_E^2}{G_M^2} + \frac{\tau}{\epsilon}} \left[\sin\theta^*\cos\phi^*\frac{G_E}{G_M} + \sqrt{\tau\left[1 + (1+\tau)\tan^2\frac{\theta_e}{2}\right]}\cos\theta^*\right]$$

- Polarized beam on polarized target
- Beam helicity asymmetry sensitive to G_E/G_M
- Maximal sensitivity for target polarization perp. to q in scattering plane
- Nearly all G_E^n data obtained from:

$${}^{3}\overrightarrow{He}(\vec{e},e'n), {}^{3}\overrightarrow{He}(\vec{e},e'), {}^{2}H(\vec{e},e'\vec{n})$$

VMD

• Fits by Lomon in extended Gari-Krumpelmann model, nucl-th/0609020

• ρ , ω , ϕ , ρ ', ω ' mesons + "direct coupling" enforces pQCD asymptotic behavior

Bethe-Salpeter Amplitude

Combined Ansatz for nucleon Bethe-Salpeter amplitude and microscopic VMD model, consider valence and nonvalence components of the nucleon state in light-front dynamics

de Melo et al. PLB 671, 153 (2009)

Dyson-Schwinger/Faddeev/q(qq)

Dressed-quark core contribution to R_p for different diquark radii

- Cloet et al., Few Body Systems, 46, 1 (2009)
- Dressed quarks are fundamental degrees of freedom
- diquark correlations
- Solution of Poincare-covariant Faddeev equations based on rainbow-ladder truncation of DSEs of QCD
- photon-nucleon vertex depends on a single parameter: diquark charge radius
- G_{Ep} and G_{En} both possess a zero

GPDs, I

 $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$ $\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$

Form factors constrain GPDs through sum rules: 0th moments of vector (H) and tensor(E) GPDs equal e.m. form factors
Above: Diehl et al; EPJ C, 39, 1 (2005)

GEp-III Collaboration 5/19/10

Experimental Hall C

GPDs, II

- Guidal et al., PRD 72, 054013 2005: Modified Regge parametrization of valence quark **GPDs**
- Three-parameter fit to nucleon form factor data
- Constraint on E from precise F_{2p} data allowed evaluation of Ji sum rule: $2J^{q} = \int_{-1}^{1} dxx \{ H^{q}(x, 0, 0) + E^{q}(x, 0, 0) \},\$

	M_2^q (MRST2002)	$2J^q$ (R2 model)	$2J^q$ (lattice [40])
u	0.37	0.58	0.74 ± 0.12
d	0.20	-0.06	-0.08 ± 0.08
S	0.04	0.04	
u+d+s	0.61	0.56	0.66 ± 0.14

pQCD, I

• Based on dimensional scaling laws for high-Q² exclusive reactions:

- Brodsky, Farrar, PRD 11, 1309 (1975)
- Brodsky, Lepage PRL 43, 545 (1979)
- Expect $F_{1p} \sim 1/Q^4$, $F_{2p} \sim 1/Q^6$, as $Q^2 \rightarrow \infty$

Approximately satisfied by G_{Mp} starting at $Q^2 \approx 5-10$ GeV^2

GEp-III Collaboration 5/19/10

Experimental Hall C

CD, II

- Belitsky, Ji, Yuan, PRL 91, 092003 (2003)
- pQCD analysis of Pauli form factor F₂
- Subleading-twist component of light cone nucleon D. A. leads to logarithmic modification of asymptotic scaling of F_2 relative to F_1

- Proton data for the *ratio* F_2/F_1 well described by this modified scaling • Necessary, but not sufficient condition for validity of pQCD form factor description

$$Q^2 \frac{F_2}{F_1} \propto \ln^2 \left(\frac{Q^2}{\Lambda^2}\right)$$

Experimental Hall C

43

Light cone QCD sum rule calculation of nucleon form factors: Braun, Lenz, and Wittmann, PRD 73, 094019 (2006)

GEp-III Collaboration 5/19/10

Experimental Hall C

- Gross and Agbakpe, PRC 73, 015203 (2006)
- Model nucleon as bound state of three dressed, valence constituent quarks
- Covariant spectator "diquark" on shell

Transverse Densities

Jefferson Lab

• Burkardt, Int. J. Mod. Phys. A 18, 173 (2003)—GPDs related to impact-parameter distributions:

$$q(\mathbf{x}, \mathbf{b}) = \int \frac{d^2 q}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H_q(\mathbf{x}, t = -\mathbf{q}^2),$$

Miller, PRL 99, 112001 (2007)—modelindependent transverse charge density from 2D Fourier transform of F_{1p}
Miller, Piasetzky, Ron, PRL 101, 082002 (2008)—model-independent magnetization density from F_{2p}

$$\rho(b) \equiv \sum_{q} e_{q} \int dx q(x, \mathbf{b}) = \int \frac{d^{2}q}{(2\pi)^{2}} F_{1}(Q^{2} = \mathbf{q}^{2}) e^{i\mathbf{q}\cdot\mathbf{b}}. \qquad \rho_{M}(b) = \int \frac{d^{2}q}{(2\pi)^{2}} F_{2}(t = -\mathbf{q}^{2}) e^{i\mathbf{q}\cdot\mathbf{b}}.$$

